Extrema on an Interval, EVT, Candidates Test

- 1. In the figure on the right, on the interval [-2, 4],
 - (a) f has an absolute maximum at
 - (b) f has an absolute minimum at
 - (c) f has an relative maximum at
 - (d) f has an relative minimum at

Definition of a Critical Number

Let f be defined at c. c is a **Critical Number** if $f'(c) = _$ or if $f'(c) _$

c is a critical number of f.

Theorem: Relative Extrema Only Occur at Critical Numbers:

If f has a relative minimum or relative maxima at x = c, then c is a _____ of f.

Extreme Value Theorem (EVT):

If f is ______ on a _____ interval [a, b], than f attains an _____

minimum value f(c) and and an _____ minimum value f(d) for some numbers c and d

in [a, b].

In other words:

If there is a _____ interval of a _____ function, there must exist inside a Biggest and Smallest value.

2. Use the Candidates Test to find the extrema on the given intervals.

(a)
$$f(x) = 3x^2 - 24x - 1$$
 on $[-1, 5]$ $\frac{x}{f(x)}$

(b)
$$f(x) = 6x^3 - 6x^4 + 5$$
 on $[-1, 2]$ $\frac{x}{f(x)}$

(c)
$$f(x) = 3x^{2/3} - 2x + 1$$
 on $[-1, 8]$ $\frac{x}{f(x)}$

(d)
$$f(x) = \sin^2 x + \cos x$$
 on $[0, 2\pi]$ $\frac{x}{f(x)}$

3. (AP Style) A particle moves along the x-axis. For $0 \le t \le 8$, the position of the particle at time t is given by $s(t) = \ln(t^2 - 2t + 10)$. At what time t is the particle furthest to the left? At what time is the furthest to the right? Justify your conclusion.

4. (Word Problem Preview). A farmer wishes to fence a rectangular pig-pen using an existing wall and 40 meters of wire as shown in the diagram.

Find the x and y dimensions to get the most area. Hint: A = x(44 - 2x)